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SECTION 1
INTRODUCTION

Nonlinear axial-mode instability in solid propellant rocket motors is

initiated by random finite amplitude events such as the expulsion of an

igniter or insulation fragment through the nozzle. When an instability is so

initiated in a motor otherwise linearly stable (i. e., stable to infinitesimal

disturbances) it is said to be a "triggered" instability. The existence of

triggered instabilities is a direct result of the fact that all the acoustic

energy gain or loss mechanisms in a solid rocket motor, e. g., pressure and

velocity-coupled driving, nozzle and particle damping, acoustic mean flow

interactions, etc., are nonlinear, i. e., amplitude-dependent to some degree.

These same nonlinearities also ensure that a nonlinear instability will not

grow without limit but will eventually reach a limit cycle amplitude at which

the net gains and losses are balanced.

Nonlinear axial-mode instabilities usually result in pressure oscilla-

tions that propagate as steep-fronted waves which are actually weak shock

waves. The acoustic pressure and velocity oscillations are frequently accom-

panied by an increase in mean chamber pressure (usually referred to as a dc

shift) and increased mean propellant burn rate. This increased burn rate is

thought to be primarily a response to acoustic velocity oscillations. Thus,

it is often referred to as acoustic erosivity.

Certain trends and characteristics of nonlinear instability have been

documented. However, attempts to form generally applicable conclusions have

been stymied by the number, the complexity, and the mutual interactions of the

governing physical phenomena. The ability to predict, avoid, or eliminate

nonlinear instability is, therefore, clearly contingent upon our ability to

understand and model these phenomena.

4



Efforts to understand and model nonlinear instability date back to the

1960's, e. g., References I to 3. The most recent work has been divided be-

tween so-called "exact" and "approximate" mathematical approaches. The

f"exact" methods of Levine and Culick 4 and Kooker and Zinn5 seek to solve

numerically the nonlinear partial differential equations governing the mean

and time-dependent flow in the combustion chamber, as well as the combustion

response of the solid propellant. The "approximate" methods of Culick6 and

Powell, et al., 7 use expansion techniques to reduce the problem to the

solution of sets of ordinary differential equations. Culick and

Levine8 carried out a brief comparison of results with these two approaches

and found that within certain limits the approximate techniques yield quite

reasonable results. Each of these methods has certain advantages,

disadvantages, and limitations regarding accuracy, computation time,

generality, etc.

The previously developed "exact" nonlinear instability programs are not

capable of treating the multiple travelling shock-wave type of instability

1. Price, E. W., "Axial Mode Intermediate Frequency Combustion Instability
in Solid Propellant Rocket Motors," AIAA Preprint No. 64-146 (Jan. 1964).

2. Brownlee, W. G., "Nonlinear Axial Combustion Instability in Solid
Propellant Motors," AIAA J. Vol. 2, No. 2 (Feb. 1964) pp. 205-284.

3. Marxman, G. A. and Wooldrige, C. E., "Finite-Amplitude Axial Instability
in Solid-Rocket Combustion," Twelfth Symposium (International) on
Combustion (The Combustion Institute, Pittsburg, Pa., 1969) pp. 115-127.

4. Levine, J. N. and Culick, F. E. C., "Nonlinear Analysis of Solid Rocket
Combustion Instability," AFRPL Technical Report TR-74-45, Oct. 1974.

5. Kooker, D. E. and Zinn, B. T., "Numerical Investigation of Nonlinear
Axial Instabilities in Solid Rocket Motors," BRL CR 141, March 1974.

6. Culick, F. E. C., "Nonlinear Behavior of Acoustic Waves in Combustion
Chambers," 10th JANNAF Combustion Meeting, Vol. 1, CPIA Publication 243,
1973, pp. 417-436, or California Institute of Technology Report, 1975.

7. Powell, E. A., Padmanabhan, M. S., Zinn, B. T., "Approximate Nonlinear
Analysis of Solid Rocket Motors and T-Burners," AFRPL-TR-77-48, 1977.

8. Culick, F. E. C. and Levine, J. N., "Comparison of Approximate and
Numerical Analyses of Nonlinear Combustion Instability," AIAA, 12th
Aerospace Sciences Meeting, Preprint 74-201, 1974.

5t



that oLUL-Ur ii the reduced miiiiinunm imioke tu&(tical inotors since developed. Nor

do these analyses contain a model for velocity coupling, something which

appears to be required to predict the types of triggering events and dc

pressure shifts that have been observed. The objective of the present

research is to extend and improve the model developed in Reference 4 to the

point where it can be used as a tool to enhance our understanding of nonlinear

instability, as an aid in the design and interpretation of related experimen-

tal work, as a means to evaluate the validity of advanced combustion response

models, and as a design aid to solve or prevent nonlinear instability

problems.

To reach the stated objective, the numerical techniques used in

Reference 4 had to be replaced by a more advanced method, and a model for

addressing velocity-coupled effects had to be incorporated into the computer

program. Other improvements, such as the ability to analyze the computed wave

forms spectrally have also been accomplished.

The ability of finite difference integration methods to solve accurately

the one-dimensional, nonlinear, two-phase, hyperbolic equations which govern

the propagation of shock waves in combustion chambers was critically

investigated.9  The results showed that excellent results are obtained by

employing a combination operator consisting of the Lax-Wendroff

scheme lO hybridized with Harten and Zwas' first order scheme l l and further

modified by an Artificial Compression correction.
1 2

9. Baum, J. 1). and Levine, 3. N., "Evaluation of Finite Difference Schemes
for Solving Nonlinear Wave Propagation Problems in Rocket Combustion
Chambers," AIAA Paper No. 81-0420, presented at AIAA 19th Aerospace
Sciences Meeting, St. Louis, MO, Jan. 1981.

10. Lax, P. D. and Wendroff, B., "System of Conservation Laws," Comm. Pure
Appl. Math, Vol. 13, 1960, pp. 217-237.

11. Harten, A. and Zwas, G., "Self Adjusting Hybrid Schemes for Shock
Computations," 3. of Comp. Physics, Vol. 9, 1972, pp. 568-583.

12. Harten, A., "The Artificial Compression Method for Computation of Shock
and Contact Discontinuities: I1, Self Adjusting Hybrid Schemes," AFOSR
Technical Report TR-77-0659, March 1977.
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A survey of past attempts to model or predict the effects of velocity

coupling on the stability of solid rocket motors leads to the conclusion that

very little is now known about velocity coupling. This conclusion is sup-

ported by the results of a recent JANNAF workshop on velocity coupling. 13 All

existing models appear to have significant deficiencies. Price's original

velocity-coupling model1 4 is purely empirical. Other investigators sought to

modify existing combustion models by introducing an additional source of heat

transfer to the propellant surface. For example, in References 15 and 4 a

heat transfer term based on an empirical function of velocity was used, while

in References 16 to 18, additional heat transfer was included on the basis of

modifications to steady-state turbulent boundary-layer theories and/or erosive

burning-rate models. All of these models ignore some of the fundamental phy-

sics of the problem. Turbulent boundary layers in the usual sense are not

typically realized in solid rocket motor chambers.19  While some of the

existing velocity-coupling models properly reduce to steady-state erosive

13. Beckstead, M. W., "Report of the Workshop on Velocity Coupling,"
presented at 17th JANNAF Combustion Meeting, CPIA Report No. 324,
Nov. 1980.

14. Price, E. W. and Dehority, G. L., "Velocity Coupled Axial Mode Combustion
Instability in Solid Propellant Rocket Motors," Proceedings of the 2nd
ICRPG/AIAA Solid Propulsion Meeting, Anaheim, California (1967) pp.
213-227.

15. Culick, F. E. C., "Stability of Longitudinal Oscillations with Pressure
and Velocity Coupling in a Solid Propellant Rocket," Combustion Science
and Technology, Vol. 2, No. 4 (1970), pp. 179-201.

16. Lengelle', G., "A Model Describing the Velocity Response of Composite
Propellants," AIAA 3. Vol. 13, 1975, pp. 315-322.

17. Condon, J. A., "A Model for the Velocity Coupling Response of Composite
Propellant," 16th JANNAF Combustion Meeting, Monterey, CA September 1979,
CPIA Pub. No. 308, Dec. 1979.

18. Srivastava, R., "Investigation of Chemically Reacting Boundary Layers in
Solid Propellant Rockets: Steady and Periodic Solutions," Ph. D. Thesis,
Georgia Institute of Technology, 1977.

19. Beddini, R. A., "Effects of Grain Port Flow on Solid Propellant Erosive
Burning," AIAA Paper 78-977, 1978.
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burning models as the limit of zero frequency is approached, none of them pro-

perly treats acoustic boundary-layer effects that become significant in the

normal longitudinal frequency range (- 200 to 1,000 Hz). 20  In addition,

acoustic boundary-layer transition and acoustic turbulence interactions may

also be important under certain conditions, 2 1 as may the interaction of an

unsteady boundary layer with the propellant surface structure.

The importance of velocity coupling underlines the need for increased

understanding of it. Experimental and analytical investigations have recently

been initiated by several researchers. To help guide in the design and

interpretation of velocity-coupling experiments and to help validate new

velocity-coupled combustion response models, there exists a need for a

comprehensive, nonlinear combustion instability model. The authors have been

developing such a model4 ,9 and have recently extended it to include the abil-

ity to treat nonlinear velocity-coupling effects.
2 2

Due to the aforementioned deficiencies of currently existing models, no

velocity-coupling model was selected for incorporation into the nonlinear sta-

bility program. Instead, calculations were performed using several different

ad hoc functions of velocity to augment directly either the heat transfer to

the propellant surface or the transient burning rate itself. The solutions 22

demonstrated many of the nonlinear characteristics observed in actual solid

rocket motor firings, e. q., steep-fronted waves, triggering, formation of

limit cycles, including those with modulated amplitudes, and increases in mean

operating pressure (dc shift). The results also demonstrated the inability of

velocity-coupling models based on standard quasi-steady gas phase, homogeneous

solid phase assumptions to generate strong nonlinear effects.

20. Flandro, G. A., "Solid Propellant Acoustic Admittance Correlations,"

J. of Sound and Vibration, 36, 1974, pp. 297-312.

21. Beddini, R. A., to be published.

22. Levine, J. N. and Baum, J. D. "A Numerical Study of Nonlinear Instability
Phenomena in Solid Rocket Motors," AIAA/SAE/ASMA 17th Joint Propulsion
Conference, July 27-29, 1981, Colorado Springs, Colorado, Paper Number
AIAA-81-1524.
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This report presents some of the most significant results with the

improved model, including: (a) a demonstration of the ability of the

developed model to treat multiple shock-wave propagation in variable cross-

sectional area ducts and solid propellant rocket motors and (b) the effect of

initial disturbance amplitude and wave form, combustion response, and particle

concentration upon limiting amplitude. This report also presents results that

demonstrate the complexity and importance of the phase relationships between

pressure, burning rate, and velocity oscillations in the presence of traveling

waves and results which briefly examine threshold velocity effects on non-

linear velocity-coupled instability.

9



SECTION 2
VARIABLE AREA DUCTS AND COMBUSTION CHAMBERS

Most practical tactical rocket motor grain configurations have a variable

cross-sectional port area. When the rate at which the area varies becomes

relatively rapid, or in the limit, discontinuous, the propagating shock wave

type of instability previously discussed becomes even more complex. If a

shock wave is traveling from a large area section to a smaller one, part of

the shock wave is transmitted and part is reflected. Thus, two shock waves,

and correspondingly two contact discontinuities, are created. In the opposite

situation, when a shock travels from a small area to a larger one, the shock

wave is transmitted and an expansion fan is reflected. In an actual motor

both of these processes occur repeatedly, creating a very complicated wave

structure in the chamber. The presence of such multiple shock-wave systems in

variable cross-sectional motors has been confirmed experimentally.
2 3

The problem of calculating shock wave propagation phenomena in variable

area chambers is clearly a severe test of a finite difference scheme's ability

to capture several shocks and describe them in a sharp nonoscillatory manner,

even after many wave cycles. To evaluate the ability of Lax Wendroff + Hybrid

+ Artificial Compression technique to treat such complex problems, a simple

closed-duct problem was solved initially.

The geometry considered is shown in Figure 1. The solution was initiated

with a continuous disturbance having an amplitude equal to 20% of the mean

chamber pressure (1,000 psi) and a wave form given by cos (IX/L) (all of the

initial disturbances for solutions presented in this report used this wave

form, and the percentage given is the zero to peak amplitude of the

oscillatory wave form as a percentage of the mean pressure). The solution was

continued for approximately 30 complete wave cycles (nondimensional time

equal 60). The initially smooth sine wave quickly steepens into a traveling

23. Hughes, P. M., and Smith D. L., "Nonlinear Combustion Instability In
Solid Propellant Rocket Motors. Influence of Geometry and Propellant
Formulation," 53rd AGARD Meeting, Propulsion and Energetics Panel, Oslo,
Norway, April, 1979.
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Figure 1. Variable Area Duct Geometry.

shock wave which, as previously discussed, is then repeatedly reflected and

transmitted as it encounters the area discontinuity and ends of the tube.

Figure 2 shows the calculated wave forms and respective power spectral

densities at five different locations along the tube for the ninth and tenth

wave cycles. As expected, the wave forms are quite complex, and both the wave

forms and their spectra vary significantly from one location to another.

Based on comparisons with experimental results from cold-gas pulse tests, the

analytical solution appears to portray accurately the physics of this complex

problem.
24

The wave form at the left end of this test problem is dominated by a

single shock wave and a single expansion fan. One should notice the sharp,

24. Lovine, R., Aerojet Tactical System, Private Communication.

11



P IPSD .

15.4 N. D. TIME 19.5 FREQUENCY

1/4 ___ PPOItNTL~

Pe PSD

15.4 N. D. TIME 19.5 FREQUENCY

PB ~PSD FJAA
15.4 N. D. TIME 19.5 FREQUENCY

Figur3/4 2.PxOde IewN'ThCacledreseHitieanPor

pecr1 Deste tFieLcts AogaD wt Ae

JupA~ . ce RJ/)

15.4 N.D. TIME 12 RQEC



nonoscillatory captured shock, even after many reflections. At the 1/4 point,

two relatively strong shock waves, two weak shocks, and two expansions are in

evidence. The spectral analysis indicates that the second and sixth harmonics

are missing, as should be expected. The wave form in the middle consists of

traveling shock waves at a frequency double that of the ends, with half the

amplitude. The main features at the 3/4 and right-end points are four and two

shock waves, respectively. One should notice the strong, augmented, even har-

monics at these locations. Since most of the significant acoustic gain and

loss mechanisms in solid rocket motors are quite frequency-dependent, the

strong axial variations in harmonic content in chambers with sharply varying

cross-sectional areas can be expected to have a significant effect upon motor

stability, an effect completely unpredictable on the basis of linear stability

analysis.

Following the successful solution of the test problem, a solid rocket

motor problem having the same geometry as Figure I (but with a nozzle at the

right end) was solved to demonstrate the capability of the developed model to

solve such problems in the presence of mean flow and combustion. Figure 3

shows the calculated pressure wave forms at the left end and 14 points of the

LEFT END 1/4 POINT

P P1

15.4 N.D. TIME 19.5 15.4 N.D. TIME 19.5
Figure 3. Expanded View of the Calculated Pressure History at Two Locations

Along the Motor with an Area Jump, ao 0.2 coo (R X/L).
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motor. Except for the rounded tops (attributable to different distribution of

energy among the respective harmonics caused by mean flow and complex nozzle

end admittance) the waveforms are quite similar to those obtained in the

closed duct problem.

14



SECTION 3
LIMITING AMPLITUDE STUDIES

From a practical standpoint, the ability to predict the limiting ampli-

tude reached by pressure oscillations in unstable solid rocket motors is

important in assessing whether such an instability will be severe enough to

warrant design or propellant modifications to eliminate it. For both prac-

tical and theoretical reasons, it is also important to establish whether limit

cycles are unique, i. e., independent of the characteristics of the initiating

disturbance.

Even under the most carefully controlled laboratory conditions, it is

almost impossible to conduct a series of motor firings in which the only

variable is either initial disturbance amplitude or waveform. To the authors'

knowledge, no test series has ever been conducted for the primary purpose of

establishing the effect of initial disturbance on limiting amplitude. Results

from some tests which approximate the required conditions are not definitive.

However, on balance they favor a conclusion that limiting amplitude is inde-

pendent of the initiating disturbance. It should be emphasized that the above

refers to the limit amplitude reachea if a motor is pulsed into instability.

It has been clearly demonstrated that the triggering event itself is dependent

on pulse characteristics.

The difficulty in experimentally examining the uniqueness of limit cycles

makes the analytical examination of this question all the more important. The

question has been previously addressed for liquid 259 26 and solid4' 6, 7, 9

rocket motors using expansion and numerical techniques. Results from expan-

sion solutions indicate that the limit cycle should be independent of the ini-

tiating disturbance. However, since these methods have limits in regard to

their applicability to strongly nonlinear situations with very high amplitudes

25. Zinn, B. T. and Powell, E. A., "Nonlinear Combustion Instability in
Liquid Propellant Rocket Engines," Proceedings of the 13th Symposium
(International) on Combustion, The Combustion Institute, 1971, pp.
491-503.

26. Powell, E. A. and Zinn, B. T., "The Prediction of Nonlinear
Three-Dimensional Combustion Instability in Liquid Rockets with
Conventional Nozzles," NASA CR-121279, October 1973.
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and/or shock-like wave forms, and since not all of the nonlinearities present

in tactical solid rocket motors were incorporated in the models, the conclu-

sion must be regarded as relevant but requiring further substantiation.

Previous results with the present "exact" model seemed to yield

apparently conflicting conclusions. Results obtained in Reference 4, for

motors with a particle-to-gas-weight flow ratio of 0.36 and 2-micron particles

appeared to demonstrate that limiting amplitude is a strong function of ini-

tial disturbance amplitude. Conversely, solutions obtained for almost iden-

tical conditions without particles9 yielded the same limiting amplitude for

both standing-wave and pulse-type initial disturbances of widely varying

amplitude. It was tentatively concluded that the apparently conflicting

results were due to nonlinear particle damping effects. Since this previous

conclusion was based on a limited number of results, it was decided to obtain

several more sets of solutions, with and without particles.

The series of results shown in Figure 4 are for a cylindrically per-

forated motor 59.7 cm (23.5 in) long with a port area of 21.5 cm2 (3.33 in2 ),

a throat area of 2.83 cm2 (.439 in2 ), and a chamber pressure of 13.19 MPa

(1913 psi). These calculations were performed for a propellant without par-

ticles and with a linear pressure-coupled response function of 5.35 (no velo-

city coupling). The solutions were initiated by perturbing the steady state

with fundamental mode disturbances of varying amplitude. The calculated

pressure perturbation histories at the head end of the motor are shown for

initial amplitudes of 40%, 8%, and 2% of the mean pressure. Other solutions

were also obtained for amplitudes of 60% and 10% of the mean pressure. All

the solutions reached the same limiting amplitude, 32.7% of the mean pressure

(peak to peak).

Additional solutions for the same motor and operating conditions were

obtained with several other pressure-coupled response functions. All the

solutions for a given response function reached the same limiting amplitude,

but each response function produced a somewhat different limiting amplitude.

Several other series of calculations were then performed with varying

sizes and amounts of particles to reexamine the conclusion reached in

Reference 4. The first series of calculations (with the same motor geometry

used in the results shown in Figure 4) were conducted with 2-micron aluminum

16
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oxide particles and 15% particle-to-gas weight flow ratio. The results shown

in Figure 5 were enlightening. The computed limit cycle amplitudes were the

same (30.4% of mean pressure, peak to peak) even though the initial distur

bance was 40% in one case and 2% in the other. Calculations with intermediate

initial disturbances also reached the same limit amplitude.

This last series of results raised serious questions concerning the

validity of the conclusion reached in Reference 4. To settle the apparent

conflict, the earlier results were reproduced. This time, however, the solu-

tions were carried out for twice as many wave cycles, which immediately pro-

vided the answer to this seeming paradox. At a nondimensional time of 70

(when the earlier solutions were terminated) the decay rate was quite small,

but not zero. It was falsely assumed that continuing the solutions would not

significantly alter the limit cycle amplitudes. The present calculations show

that, except for initial perturbations close to 5%, the wave is either still

growing or decaying at T=150. All the solutions were getting closer and

closer to the same limiting amplitude, but had yet to reach it. Figure 6

shows the present results with 2-micron, 36% partLcle-to-gas weight flow ratio

and initial disturbance amplitudes of 40% and 2% of the mean pressure. Given

the previously presented results for 15% 2-micron particles, it is expected

that the solutions would approach the same limiting amplitude. Furthermore,

Figure 6a demonstrates that when a particular motor propellant combination is

near neutral stability (i.e., very small growth or decay rate), a very long

time is needed to reach a limit cycle condition.

To reinforce further the above conclusions, calculations were made for

the same motor and propellant (36% of 2-micron particles) but with increased

pressure-coupled response function. The increased combustion driving unbal-

ances the gains and losses and, as seen in Figure 7, results in the relatively

rapid establishment of a limit cycle, with an amplitude of 29.6%. Here again,

limit amplitude was independent of initial disturbance amplitude.

The pressure waveforms at the limit cycle conditions for the gas-only

solution (Figure 4), 15% 2-micron particle (Figure 5), and 36% 2-micron par-

ticle solutions (Figure 7) were spectrally analyzed. Due to the strong fre-

quency dependence of particle damping for 2-micron particles, it was expected

that the limit cycle wave form with particles would contain considerably less

18
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higher harmonic content than the gas-only limiting wave form. Particle

damping calculations in closed tubes5 , 24 also reinforced this expectation.

Although the higher harmonic content of the solutions with particles was less

than for the no-particle solution, the differences were minimal. It should be

noted that to maintain the limit amplitudes at about the same level for each

of these cases, the response function had to be increased with increasing par-

ticle concentration. It should also be mentioned that even without particles,

the higher harmonic content of the wave forms in this motor was significantly

less than that of a similar motor with larger Kn.9  Additional calculations

will be performed in the future to explore further the significance of this

result.
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St F1 ION 4
AD HOC" VELOCIIY-COUPLING MODELS

If velocity oscillations affect the transient burning rate of solid

propellants, they must, in one way or another, enhance the heat transfer from

the gas phase to the propellant. Symbolically, the energy balance at the pro-

pellant surface is written as:

K3T K + p rQ (1)

heat transfer heat transfer total energy
to solid pro- from gas phase released at
pellant to surface surface

The term K T has to be modified to incorporate the effect of acoustic
g aXi +

velocity fluctuations. In the absenLe of a fundamental physical model, a

number of functional forms were considered for the dependence of K T I on

u'. Since a functional form of the following type has sometimes been success-

ful in rationalizing observed events, it was considered first.

[K aJ +J vc - [1(u-ut) - E2 (G-ut)(2

where 1 O(u < ut)

1 l,(u > ut)

and C2 =  ( < u )
1,(u > ut)

Here u is the total velocity, u u + u'; d is the mean velocity, vs- u' th-;

local acoustic velocity fluctuation. The term ut represents a thr-'i'old velo-

city which, in reality, may or may not exist. Justification for this func-

tional form may be found in several references. 22 , 27

27. Medvedev, Yu. I. and Revyagin, L. L., "Unsteady Erosion of a Powder,"
Fizika Goreniya i Vzryva, Vol. 10, No. 3, pp. 341-345, May-June 1974.
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When u' >u and ut = a, Equation (2) can be approximated by:

K 3 (3)
g 3- + vc

According to linear analysis, a term such as shown in Equations (2) and

(3) can be added only to the heat transfer. However, in nonlinear analysis, a

velocity-coupled heat transfer term could be incorporated on an additive or

multiplicative basis. It was decided to insert a term on a multiplicative

basis. The following functional form was adopted:

, R

K T T I + vc F(u) (4)g -X + pc+vc 9 ax + pc R P vc! pc

where F(u) is given by Equation (2) or (3), Rpc is the pressure-coupled

response function, and Rvc is the linear velocity-coupled response function.

For small amplitude oscillations, u'<u and ut = a, the right side of Equation

(2) reduces to ul. Thus, using the combustion model evaluated in the linear

limit,"1 it can be shown that for Rvc to be equal to Rpc, evc in Equation (4)

must satisfy

C (n-n)
2n(l-H) + PC A a

vc (1-H)

In the small amplitude linear limit, Equation (4), combined with the present

combustion model, reduces to the velocity-coupled model used by Culick, 6 and

Levine and Culick.
4

Equations (4) and (5) together with either (2) or (3) were termed the heat

transfer augmentation model. For reasons to be discussed in the next section,

results were also obtained with the following equation:

W + = W 1 + R F(u)pc vc pc vc (6)

W is the instantaneous propellant mass burning rate (W=W+W'), and Wpc is the

instantaneous mass burning rate computed from the existing pressure-coupled
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model. With F(u) given by Equation (2) Equation (6) reduces, in the low

amplitude limit, to the linear velocity-coupling model used in the past. The

key difference between Equation (6) and Equation (4) is that the velocity-

coupling effect built into Equation (6) directly modifies the propellant

burning rate rather than affecting it indirectly through a model developed for

pressure-coupled response function prediction. Equation (6) has been termed

the burn rate augmentation model.
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SECTION 5
VELOCITY COUPLING RESULTS

Reference 22 presents results obtained by using both the heat transfer

and burn rate augmentation models. With the heat transfer augmentation model,

neither triggering nor measurable mean pressure shifts could be produced, even

with a velocity-coupled response function of 19.8. With the burn rate augmen-

tation model, results exhibiting triggering and mean-pressure shifts were

obtained with velocity-coupled response functions as low as 5. It was

concluded that the inability of the heat transfer augmentation model to pro-

duce significant nonlinear velocity-coupling effects is symptomatic of defi-

ciencies resulting from the use of a quasi-steady gas phase, homogeneous solid

phase, combustion model. Results from further investigations reported herein

provide some insight into the posible nature of the deficiencies.

The results shown in Figures Ba and 8b were obtained for a constant

cross-sectional area cylindrically perforated motor, 23.5 inches (0.597 m)

long. The reasons for selecting a cylindrical configuration to start with

were: (a) it is the simplest possible motor configuration, (b) a large body

of pressure-coupled-only solutions was available for these configurations,

(c) linear velocity coupling theory28 yields no effect of velocity coupling

for such configurations. Thus, any velocity-coupling effects observed would

be due to nonlinear effects, and (d) although cylindrical motors often show

little evidence of velocity coupling, in many recorded instances severe

triggered instabilities, with large mean pressure shifts, have been observed

in such motors.
13- 15 , 22

With a linear pressure-coupled response function of 3.3 and no

velocity-coupling, this motor-propellant combination reached a limit amplitude

of 21.73% of mean pressure, peak-to-peak. With the heat transfer augmentation

model and a velocity-coupled response function equal to 3.3 (Figure 8a), the

calculated wave form is almost identical to the one obtained with pressure-

28. Lovine, R. L., "Standardized Stability Prediction Method for Solid Rocket
Motors," Vol. 1, AFRPL-IR-76-32, May 1976.
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coupling alone. The peak-to-peak limit amplitude was increased by only 1.2%.

Raising the velocity-coupled response to 19.8 increased the change in peak-to-

peak amplitude to 7.3% (Figure 8b). Nevertheless, even at this high response

value, no measureable dc pressure shift was observed.

To explore further the reasons for this behavior, additional solutions

have been obtained with extremely high values of Rvc. At a value of Rvc - 40,

strong nonlinear effects and a measureable dc shift were produced. At Rvc =

60 (Figure Bc), a significant dc pressure shift is observed, as well as a

modulated limit cycle amplitude. These results are similar to those obtained

with the burn rate augmentation model with significantly lower velocity-

coupling response function values (as low as Rvc = 5).

Based on these results, it has been concluded that the relative ineffec-

tiveness of the heat transfer augmentation model is a result of the response

function versus frequency characteristics implied by Dennison and Baum type

models. With such quasi-steady combustion models, the gas phase heat transfer

(whether from pressure- or velocity-coupled effects) produces a response func-

tion versus frequency curve that has a single narrow peak. Figure 9 depicts

the response function versus frequency curve for the parameters used in the

calculations shown in Figure I (A = 5.975, B = .53). At the nondimensional

frequency implied by the propellant burn rate parameters and motor operating

conditions used in the calculations (a = 3.78), the pressure-coupled response

function was equal to 3.3. At the second harmonic frequency, S = 7.56, the

response function is only 0.3, while at the higher harmonics, it is even

lower. With the heat transfer augmentation model, the velocity-coupled

response function is, to first order, proportional to the pressure-coupled

response. (Note: for the problems being considered, the waves are primarily

traveling rather than standing, and the velocity is approximately in phase

with the pressure over half the cycle and 180' out of phase with the pressure

over the other half of the cycle.) Thus, for the problem that was solved, the

velocity-coupled response for the second harmonic was about a factor of 10

lower than the response function at the fundamental frequency.

With the mass transfer augmentation model, Equation (6), the velocity-

coupling response is independent of the combustion model, and to first order

is independent of frequency. Thus when a velocity-coupled response function
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of 5 was specified, this was the approximate value at all frequencies. Given

the nature of Figure 9, it would require a value of Rvc/Rpc = 16.6 (which

implies Rvc = 55 for the first harmonic) for the heat transfer augmentation

model to produce a similar value of Rvc = 5 for the second harmonic.

The above discussion appears to explain the wide disparity between the

results obtained with the two ad hoc models. Furthermore, it implies that a

realistic velocity-coupling model will have to be capable of providing strong

driving at the higher harmonic frequencies.

The results presented in this report were obtained with a constant cross-

sectional area grain for which linear velocity coupling is zero with the ad

hoc models for both standing and traveling waves. Thus, the observed results

are attributable to nonlinear velocity-coupling effects. In variable area

grains, linear as well as nonlinear velocity-coupling effects may be observed.

Nevertheless, it is expected that even in such cases, significant nonlinear

velocity-coupled response will require strong driving at the higher harmonic

frequencies. This hypothesis will be explored in the near future.

To further our understanding of the velocity-coupling problem and nonli-

near instability in general, the previously obtained solutions22 were exam-

ined in detail, not only at the head and aft ends, but also at the one

quarter, one half, and three quarter points. Figures 10, lla, and llb repre-

sent an interesting series of results. These solutions are for the same motor

and propellant combination as the Figure 1 calculations, but with a pressure-

coupled response function of 2.18. With this pressure-coupled response and no

velocity-coupling, the motor is stable, even at an initial disturbance ampli-

tude as high as 40% of the mean pressure (Figure 10). Figures lla and llb

were obtained using the burn rate augmentation model for velocity-coupling

with Rvc= 5 and F(u) given by Equation (3). With an initial disturbance

amplitude of 2% (note that all of the initial disturbances were first har-

monic standing waves), the wave grows slightly initially, but then damps

(Figure lla). Overall, the result is a stable motor. With an initial distur-

bance amplitude of 5% (Figure llb), the oscillations rapidly grow, appear to

reach a limit amplitude, but then grow again. In addition, a mean pressure

shift of about 12% is observed. These results demonstrate triggering at a

finite initial disturbance amplitude, steep-fronted waves, mean pressure shift
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and a lack of a steady limit cycle, all characteristics often observed in

motor data.

The behavior demonstrated in Figures Ila and lib is very complex and is,

undoubtedly, the result of many mutually interacting nonlinear fluidynamics

and combustion phenomena. Some of the complexity of the problem is

illustrated in Figures 12 and 13, which present expanded views of the

pressure, burning rate, and velocity (actually F(u) = lu'I ) wave forms at

the head end, 1/4, 1/2, and 3/4 points and aft end, for the cases previously

presented in Figures Ila and llb. The wave forms are shown in the interval

around a nondimensional time of 30 (15 wave cycles).

If the oscillations were standing waves, the velocity oscillations would

be 90' out of phase with the pressure. On the other hand, if the oscillations

were being produced by a traveling wave, the pressure and velocity would be in

phase for half of a wave cycle, and 180" out of phase for the other half of

the cycle (Figures 12 and 13 show lul rather than u'; thus lu'l should be in

phase with p' for the whole cycle). The phase relationship between p' and m'

is a very complex function of the frequency, amplitude, and phase of the

pressure and velocity waves and the characteristics of the propellant. From a

stability standpoint, the phase relationship between p' and m' is critical,

since the combustion driving is produced by the component of m' that is in

phase with p'. The figures were designed only to display the phase rela-

tionships between the oscillations; the amplitude scales for each curve are

different and are not indicated.

From Figure 12 (stable) and Figure 13 (unstable), it can be seen that the

waves are primarily, but not completely, traveling waves, since the velocity

is close to being in phase with the pressure. This is true even though the

calculations were initiated with a standing wave disturbance, and for the

stable case, even though the waves are not steep fronted and are of relatively

low amplitude. In addition to the differences in wave forms, there are some

other significant differences between the two sets of results. At the head

and aft ends, where the velocity oscillations are zero or very small,

respectively, the phase relationship between m' and p' is still quite dif-

ferent for the two cases. In the stable case (Figures 12a and c), the burn

rate leads the pressure by about 51', while in the unstable case (Figures 13a
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and c), the burn rate lags the pressure, but only by 8'. At these points

(X = 0, X = L) the difference in phase between the two cases can only be

attributed to the difference in the pressure wave form. At the 1/4 point, the

results are somewhat more complicated. For the unstable case (Figure l3b),

the amplitude of the pressure wave is lower when it is traveling towards the

head end than after it has been reflected off the head end and is traveling

back towards the nozzle. The behavior of the burning rate and velocity wave

forms for this case is just the opposite, i. e., they are lower after reflec-

tion than before it. For the stable case (Figure 12b), both the pressure and

burning rate are lower after reflection, while the velocity is higher after

reflection than before it. In addition to the differences in the behavior of

the wave amplitudes, the phase relationships in the two cases are also

different. In the ir,stble case (Figure 13b), the burning rate is almost

exactly in phase with pre-sure over the whole wave cycle, while in the stable

case (Figure 12b), the burning rate leads the pressure by about 20' when the

wave is traveling towards the head end and lags the pressure by about 20' when

the wave is traveling towards the nozzle. In the unstable case, the velocity

leads the pressure by about 10' when the wave is traveling to the left, and

lags the pressure by about 10' when it is traveling to the right. In the

stable case, the velocity lead/lag is the same with regard to the

direction of travel, but the magnitude of the lead or lag is about double

(about 20').

At the center of the motor (Figures 12c and 13c), the wave amplitudes are

almost the same, regardless of the direction of travel, and the phase dif-

ferences essentially disappear. In the center, the pressure, velocity, and

burning rate are all in phase, in both cases. At the 3/4 point, the amplitude

and phase behavior for the two cases are similar to those at the 1/4 point,

but in an antisymmetric fashion in regard to direction of wave travel.

Just from examining these two cases at one point, it becomes apparent how

complex nonlinear wave propagation can become. The waves are, in general,

some combination of traveling and standing waves. The frequency content of

the waves and the phase relationships of the pressure, velocity, and burning

rate vary significantly from one point in the motor to another, and for the

same motor, vary as a function of the initial disturbance amplitude. In
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addition, the phase angle between m', u', and p' varies intracycle, i. e.,

from one portion of the wave cycle to another, and also varies in time from

one cycle to another. This nonstationary behavior of the phase angle is the

most likely cause of the modulated limit cycle amplitudes observed in the

nonlinear velocity-coupling solutions. Results such as those presented above

help to demonstrate clearly why attempts to solve nonlinear instability

problems using techniques and understanding based on linear analyses cannot be

expected to be uniformly successful.
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SEC [ION 6
THRESHOLD EFFECTS

The previous velocity-coupling discussion, and the discussion in

Reference 22, were for zero threshold velocity. Since threshold effects have

been observed, 2 7 a briei attempt was made to examine their effect within the

context of the present ad hoc models. The results presented in Figures 14 and

15 were obtained for the motor used in the other cases presented. The burn

rate augmentation model was used with F(u)= lu'l -ut. With the same pressure

and velocity coupling values used in obtaining the results presented in

Figure 11 (Rpc = 2.18, Rvc = 5), an unstable result could not be achieved with

a threshold velocity equal to 0.02 (ut is normalized by the steady-state gas

sound speed, so ut = .02 corresponds to about 60 ft/sec). Rvc was then

increased to 13 and the calculations repeated in this case, with ut = .02 and

AP = 0.02 ; a stable result was again achieved (Figure 14a). However, when

AP was increased to 0.08, a highly nonlinear instability was produced

(Figure 14b). The threshold velocity was then increased to 0.05. With the

increased threshold velocity an unstable result could not be achieved, even

with initial perturbations as large as 40% (Figure 15).

Although threshold effects, if they exist, are not expected to be a func-

tion of only mean and/or fluctuating velocity, these results indicate that, as

expected, threshold effects act to increase the magnitude of the velocity-

coupled response function required to trigger an instability. The results

also imply that propellants with high thresholds will be difficult or

impossible to trigger. Threshold effects, variations in Rvc as a function of

frequency, and nonlinear fluid dynamic effects, all interact to determine the

nonlinear stability of a given motor propellant combination.
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SE(IION 7
CONCLUSIONS

The complexity of nonlinear instability in solid propellant rocket motors

and the large number of mutually interacting physical phenomena which control

it make it very difficult to form generally valid quantitative conclusions,

even from a relatively large number of numerical or experimental results.

The following conclusions can, however, be drawn from the large number of

nonlinear instability solutions obtained during the present investigation.

1. The Lax-Wendroff + Hybrid + Artificial Compression finite difference

technique can accurately predict the propagation of multiple shock

waves in variable cross-sectional area rocket motor chambers.

2. The present nonlinear stability analysis is able to predict the ten-

dency of motors with area discontinuities to form multiple shock

waves. The solutions also demonstrate the complex axial variations

in pressure oscillation spectra that can be expected in variable area

motors.

3. Based on many more solutions than had been available in the past, it

is concluded that pressure oscillations will reach a limiting ampli-

tude independent of the characterstics of the initiating disturbance.

This conclusion appears to hold for unmetallized as well as

metallized solid propellants, but cannot as yet be generalized to

include cases in which strong nonlinear velocity coupling is present

(see number 7 below).

4. Velocity-coupling models based on quasi-steady gas phase, homogeneous

solid phase, assumptions are not capable of producing strong

nonlinear effects at realistic values of velocity-coupled response

function.

5. A realistic velocity-coupling model must be capable of predicting

high combustion response over a wide frequency range for propellants

known to be able to produce strong nonlinear velocity-coupling

effects.
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6. Nonlinear oscillations in solid rocket motors are very complex. The

oscillations are, in general, a combination of traveling and standing

waves, with the traveling component being dominant, even for

non-steep-fronted waves at relatively low amplitude.

7. The phase angles between the pressure and velocity and burning rate

oscillations vary from one location in the motor to another, and are

nonstationary in time. The nonstationary behavior of the phase

angles is the most likely cause of the modulated limit cycle

amplitudes observed in the solutions and in motors.

8. Solutions obtained using a threshold velocity imply that propellants

with a high threshold will be difficult or impossible to trigger

unless they also have a very high level velocity-coupled response.

(Conclusions 4 through 8, regarding velocity-coupling, are based on

the results with ad hoc models and constant cross-section motors.)
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